
International Journal of Heat and Mass Transfer 47 (2004) 1391–1401

www.elsevier.com/locate/ijhmt
The impact of compressible liquid droplet on hot rigid surface
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Abstract

The processes arising when a high-velocity liquid nitrogen drop impacts a hot rigid wall have been studied by means

of numerical simulation. An extremely thin near-wall layer of fluid undergoing heating and liquid–vapor phase tran-

sition is clearly distinguished in the droplet, the rest of the liquid remaining cold. A model for the layer, based on the

reduced compressible Navier–Stokes equations with a two-phase equation of state, has been constructed and adjusted

to the known model for the cold liquid part of the drop, based on the barotropic liquid Lagrangian equations with the

Tait equation of state. A predictor-corrector finite-difference scheme for the thin layer equations has been devised and

coupled with the finite-element method for the barotropic liquid. Drop shapes and flow field distributions in the layer

have been obtained for the impacts of nitrogen droplets of different sizes with an initial velocity 186 m/s and different

wall temperatures. The influence of the vapor layer on the drop has been analyzed. The heat flux on the wall has been

calculated. An analytic formula has been derived for the heat flux, which is in agreement with the calculations for

droplets up to 0.1 mm radius.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

While the interaction between liquid sprays and solid

objects occurs in a wide variety of industrial and envi-

ronmental applications, our understanding of the

mechanisms involved in the process is far from com-

plete. Of fundamental importance to such processes is

the hydrodynamic and thermodynamic behavior of in-

dividual droplets, which affect a solid surface. Compre-

hensive reviews on the impacts of drops on obstacles can

be found in [1–4]. However, impacts at the velocities

comparable with sound speed are not prevalent.

A high-speed droplet impact on a cold surface was

investigated experimentally, analytically and numeri-

cally in the works referred to in [3,8]. The present work
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is aimed at the aspects of an impact on a hot surface.

One of the most important parameters of such an impact

is the heat transferred through the wall to the fluid. This

heat may cause a thermal shock on the hot solid material

[6]. Alternatively, this energy can be used to increase the

temperature of the liquid and to vaporize liquid from the

droplet base. If the heat transfer rate is large enough

during the impact, liquid vaporizing from the base of the

droplet can form a ‘‘cushion’’ of vapor between the wall

and the liquid phase, which may be capable of repelling

the droplet from the substrate. If no direct contact be-

tween the liquid and the substrate occurs, the impact is

said to be a film boiling impact [7]. The film boiling

impact has been thoroughly studied in the works [4,5]

for the impact velocities up to tens meters per second.

An impact at velocity comparable with the sound speed

in droplet liquid differs by the influence of liquid com-

pressibility on ongoing processes. At high pressure there

is no distinct phase boundary between liquid and vapor.

That is why the term film boiling is not applicable in this

case. Nevertheless, as before, the main processes occur

in a thin near-wall layer.
ed.
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Experimental study of processes that occur during

high-speed impact is hardly available due to the con-

vexity and non-transparency of small droplets, as well as

the great difference of drop and vapor layer scales.

In the study we consider nitrogen drops (at initial

temperature T0 ¼ 70 K) impacting a flat rigid wall

(heated to temperature, Twall, from the range up to 600

K) at initial velocity V0 ¼ 186 m/s. Drop sizes (radii) lie

in the range from 0.001 to 10 mm.
2. Background and formulation of the problem

We now briefly describe the sequence of events dur-

ing the impact on a cold wall [8]. At the initial stage, the

free surface not contacting with the wall is not de-

formed. The compression region of the drop is bounded

by a shock wave adjacent to the contact spot (Fig. 1a).

The reason is that the velocity of the contact spot

boundary motion along the wall is infinitely large at the

hitting instant, and the disturbances propagating from

the wall cannot interact with the free surface. The

compression of the liquid is maximal at the contact

periphery and continues to increase. One could say that

in this stage the droplet accumulates the energy for

releasing it into a jet. At the critical instant, the shock

wave detaches from the contact area and interacts with

the free surface, resulting in a rarefaction wave propa-

gating inside the drop. The free surface starts to deform,

and a near-wall high-velocity jet occurs (Fig. 1b). The

time of jet formation depends mostly on the viscosity of

the liquid and less on the surface tension. The jet tip

velocity along the wall far exceeds the impact velocity.
Fig. 1. The sequence of events during th
When the shock wave approaches the top of the drop,

the rarefaction wave, which follows the shock wave,

causes the formation of a toroidal cavitation area with

the cross-section shown in Fig. 1c. At the final stage of

interaction, the expansion wave collapses at the sym-

metry axis, and a vast cavitation area forms (Fig. 1d),

with the maximum of rarefaction located near the axis.

Then, the drop splashes. Estimations of the spreading

time, the jet velocity, the maximum pressure and the

force on the wall can be found in [8] for water drops. It

was also found that the liquid flow outside the jet is

determined by the initial velocity only, because viscous

and surface effects depending on drop size are negligible

far from the jet. In contrast, they might be crucial for the

jet formation instant and the jet tip propagation velo-

city.

When impacted on a hot wall, the liquid near the

contact spot is heated and transforms to vapor (Fig. 2).

Due to the short impact time and the comparatively low

heat conductivity, the vapor layer thickness is some or-

ders smaller than the drop size. The layer accumulates

energy by heating and may be able to push the liquid

back. Let us briefly consider the results obtained using a

1D model, published in [11]. As observed, in contrast to

2D (axisymmetric) case, a 1D drop can be repelled from

the wall even in a ‘‘cold’’ impact. For the ‘‘hot’’ impact

of the 0.02 mm 1D small nitrogen ‘‘drop’’ with V0 ¼ 186

m/s, Twall ¼ 600 K, it was obtained that vapor layer ex-

pansion increases the amplitude of the shock wave.

Hence, the drop moves in the backward direction with a

higher velocity than in a ‘‘cold’’ impact. During the

initial stage of the impact of a comparatively big 2 mm

drop the layer energy is much less than the initial drop
e droplet impact on a cold surface.



Fig. 2. A schematic of a droplet impact on a hot surface.
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kinetic energy. Hence, the layer cannot significantly in-

fluence the shock wave. However, the propagation time

of the wave is long enough for the layer to accumulate

energy. Therefore, when the rarefaction wave comes

from the free surface to the wall, the layer produces the

second compression wave. As soon as this wave reaches

the free surface, it provides acceleration, to a fraction of

the liquid near the top of the drop, in the reverse di-

rection, which evokes drop disintegration.

In 2D, most of the shock wave energy transfers to the

kinetic energy of the radial jet. Therefore, the shock

wave cannot produce bouncing and moreover it cannot

significantly slow down the drop during a ‘‘cold’’ im-

pact. We can expect that in a ‘‘hot’’ impact the vapor

also lose the energy, moving in the radial direction along

with the liquid jet. That is to say, regardless of the jet,

‘‘cold’’ and ‘‘hot’’ impacts are to be similar, if the initial

velocity is high. In this work, we are checking this as-

sumption, are investigating the interaction between the

drop liquid and the layer, and are calculating the heat

transferred from the substrate to the fluid.
3. Mathematical model

The construction of the mathematical model of a

high-speed impact on a hot surface started with a 1D

model based on the complete Navier–Stokes equations

accomplished with the two-phase liquid–gas state

equation for nitrogen. This model clarified that the time

and spatial scales characterizing the flow near the hot

surface differ from the scales for the liquid flow in the

rest of the droplet. That is why two different mathe-

matical models have been formulated. The first model

for the cold liquid borrows from the work [8] concerning

droplet impact on a cold surface, where it was tested and

found to be in good agreement with experiments. Ac-

cording to this model, the cold liquid in the drop is
considered as a barotropic fluid described by the com-

pressible Navier–Stokes equations written in the

Lagrangian 2D cylindrical coordinates and by the Tait

equation of state. Here the velocity components, the

density, the sound speed and the pressure of the cold

liquid are denoted as ucold, vcold, qcold, acold and pcold, res-
pectively.

A different mathematical model has been formulated

for the thin near-wall domain below the ‘‘drop–layer’’

boundary, shown in Fig. 2, with the following assump-

tions:

• the height of the vapor layer is small compared with

the radius of the droplet (the layer shown in Fig. 2 is

enlarged);

• the height of the layer is a smooth function of the

radial coordinate;

• the normal to the wall component of the heated fluid

velocity is much lower than the initial impact velo-

city;

• the temperature on the solid surface is constant;

• no temperature discontinuity exists between the solid

surface and the fluid;

• radiation heat transfer is negligible;

• the thermal conductivity of the fluid, k, is constant,

corresponding to its value for cold densed medium,

where heat conduction is considerable;

• an influence of the surrounding medium flow is neg-

ligible (as in [8]).

Using the mentioned assumptions and estimating the

order of magnitude for the individual terms of the axial

momentum equation, we find that it simplifies to

op
ox

¼ 4

3

o

ox
l
ou
ox

; ð1Þ

where the x-axis is the axis of symmetry of the drop (y-
axis points along the wall), shown in Fig. 2; p is the
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pressure; u is the velocity component in x-direction; l is

the viscosity coefficient. For the bulk of the layer, the

viscous term on the right-hand part is very small, which

leads to the approximate pressure constancy across the

layer.

The radial momentum equation and the continuity

equation are considered in their complete form:

oqv
ot

þ oquv
ox

þ oqv2

oy
þ qv2

y
þ op

oy

¼ o

ox
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oy
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� 2
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oy
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; ð2Þ

oq
ot

þ oqu
ox

þ 1

y
oqvy
oy

¼ 0; ð3Þ

where q is the density; v is the velocity component in

y-direction.
The equation for conservation of thermal energy,

neglecting the viscous dissipation terms, is written as

oT
ot

þ u
oT
ox

þ v
oT
oy

¼ k
qCp

o2T
ox2

�
þ 1

y
o

oy
y
oT
oy

�
; ð4Þ

where T is the temperature; Cp ¼ Cpðq; T Þ is the specific
heat at constant pressure.

For the viscosity the Sutherlands law was used,

l ¼ bT 3=2=ðT þ 106:667 KÞ, where b ¼ 1:3998� 10�6

kgm�1 s�1 K�1=2.

3.1. Equation of state

The equation of state for the liquid-gaseous nitrogen

p ¼ pðq; T Þ (Fig. 3) and the dependence Cp ¼ Cpðq; T Þ
Fig. 3. The state equation for nitrogen is shown as the plot of

isolines labeled in Kelvin. Thick lines are the metastability re-

gion boundary and Tait equation of state. The small circle

marks the critical point.
are taken from [10]. Note that for a high-speed impact

the characteristic pressure is much higher than the

pressure at the critical point. That is why we do not

observe a distinct boundary between the liquid and va-

por, but a zone of phase transition, marked as the hat-

ched strip in Fig. 2. Indeed, in the considered case of a

high-speed impact the maximum pressure can be esti-

mated approximately as 3q0a0V0 [8], where a0 ¼ 934 m/s

is the sound speed in the initial state at T0 ¼ 70 K,

q0 ¼ 804 kg/m3. For instance, for V0 ¼ 100 m/s the

corresponding pressure is about 200 MPa. This maxi-

mum pressure, originating during the impact, is much

higher than the critical point value pc ¼ 3:4 MPa (Fig.

3). That is why the trajectory of states during the impact

cannot enter the metastability region, and we do not

observe an abrupt but rather a gradual change of pha-

ses. The zone of phase transition inside the layer is

shown in Fig. 2 as the hatched line.

3.2. Initial and boundary conditions

At the initial moment of an impact the drop is im-

plied to be a liquid ball with the given radius, R0. The

state parameters are the given temperature, T0, the at-

mospheric pressure and the corresponding density, q0.

The impact velocity is V0.
No-slip boundary conditions are imposed at the wall,

x ¼ 0 (Fig. 4); the wall temperature is Twall. The sym-

metry conditions are set for y ¼ 0.

The position of ‘‘drop–layer’’ boundary (Fig. 2),

x ¼ xlðyÞ, is determined by temperature. Namely, it

corresponds to the temperature level T dðyÞ ¼ T coldðyÞþ
eðTwall � T coldðyÞÞ, which is close to T coldðyÞ. Here e is

the small numerical parameter, set to be 0.01; T coldðyÞ is
the temperature of the cold liquid having undergone the

shock wave. On the ‘‘drop–layer’’ boundary, the field

disturbances propagating from the cold drop to the layer

are described by the cold liquid equations. Hence for

x ¼ xlðyÞ, it is proposed to impose the condition on the

Riemann invariant

�uþPðpÞ ¼ �ucold þPðpcoldÞ; PðpÞ ¼
Z p

0

dp
qa

; ð5Þ

where the integral PðpÞ is calculated at T ¼ T0. The

other condition here is ov=ox ¼ 0.

An overlap of the computational domains is implied,

the first domain covering the cold liquid, the second one

covering the layer. The top boundary of the second

domain is ‘‘semi-infinite’’ at x ¼ x1, remote from the

‘‘drop–layer’’ boundary, x ¼ xlðyÞ. Between the ‘‘drop–

layer’’ boundary and the top boundary of the ‘‘layer

domain’’, the pressure and the velocity are constant

across the layer. Hence, the only holding condition for

the heat transfer equation necessary is at the top

boundary of the ‘‘layer domain’’, which is oT=ox ¼ 0.



Fig. 4. A schematic of the heated fluid layer computational domain.
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The outlet of the layer domain is set at the contact

spot contour, y ¼ yM , and then at the tip of the jet. Hard

boundary conditions are applied here, if the velocity of

the contact spot contour, VM , is higher than the velocity

of the cold liquid along the wall, vcold. The conditions are
q ¼ qcold, v ¼ vcold, u ¼ 0, T ðxÞ ¼ fT cold if x > 0;
T wall if x ¼ 0g. When field disturbances reach the outlet

boundary, i.e. when VM < vcold, the conditions are re-

placed with the soft conditions: oq=oy ¼ 0, ou=oy ¼ 0,

ov=oy ¼ 0, oT=oy ¼ 0. In the simulations, the negligibly

thin edge of the jet was excluded from consideration, the

layer domain was shortened.
4. Numerical scheme

To solve the equations for the cold barotropic liquid

with a free moving boundary we used the well-proved

algorithm [9] based on the Lagrangian description, the

finite-element approach combined with a TVD-scheme,

the moving unstructured triangular mesh adapting to

flow field and the embedded finer adaptive mesh cover-

ing the jet origin zone.

To construct a numerical scheme for the hot impact

problem (Eqs. (1)–(5)) it is necessary to take into ac-

count numerous mathematical properties of the system.

Indeed, the main process is the heat transfer across the

layer, which is described by the parabolic equation (4)

and determines the dominant changes of the medium

density. Hence, excluding heat transfer, Eqs. (1)–(3) re-

veal the properties of the incompressible Navier–Stokes

equations, which are of the elliptic and parabolic types.

Besides, the condition at the ‘‘drop–layer’’ boundary (5)

is governed by the hyperbolic equations for the cold

liquid, providing wave-like propagation of field distur-

bances along the layer. The other computational com-

plexities are caused by the high non-linearity due to the

phase transition inside the layer; by the modification of

the boundary conditions at the layer onset and by the

implicit dependence of pressure and flow fields on the
‘‘drop–layer’’ boundary (5). Fortunately, the simplifi-

cation made for the normal momentum equation allows

outgoing sound speed effects of wave propagation across

the layer.

As a result, an implicit finite-difference numerical

scheme with a predictor for the heat transfer equation

has been proposed. The role of the predictor is to treat

the biggest changes of density in the region of phase

transition before solving the dynamics equations. That is

why on the predictor step Eq. (4) is solved across the

layer for the new temperature T �, and the density q� is

predicted, supposing the layer pressure to be equal to the

one in the ‘‘cold’’ domain at the ‘‘drop–layer’’ boundary

pdðyÞ ¼ pcoldðxlðyÞ; yÞ:

T �
i;j � T n

i;j

Dt
þ uni;j

oT �

ox

� �
i;j

¼ k
qn
i;jCn

pi;j

o2T �

ox2

� �
i;j

þ Dx
2
juni;jj

o2T �

ox2

� �
i;j

;

q�
i;j ¼ qðpdj ; T �

i;jÞ; i ¼ 0; . . . ;Ni; j ¼ 0; . . . ;Nj:

Here and in the future the superscript n denotes the

previous time step; i; j are the node indexes on the

rectangular mesh of dimension Ni � Nj. The brackets

with subscripts mark the difference derivatives centered

at the point corresponding to the subscripts. The term

with the mesh cell size Dx as a coefficient is used as an

artificial viscosity to construct the upwind approxima-

tion of the convection terms. The obtained linear system

is solved by the scalar Thomas algorithm. The equation

for density may have several solutions; the correct so-

lution is the one closest to qn
i;j.

Then, by means of linearization and factorization of

the left-hand part of the implicit approximation for the

complete set of Eqs. (1)–(4) we obtain two block-dia-

gonal linear systems. For that purpose, we consider

ðq; qu; qv; T ÞT as a vector of main variables and factorize

the momentum equation (1) as an equation for q and the

continuity equation (3) for qu. The values on the new
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time step are defined via their increments as

qnþ1
i;j ¼ q�

i;j þ Dq
i;j, ðquÞnþ1

i;j ¼ ðquÞni;j þ Dqu
i;j , ðqvÞnþ1

i;j ¼
ðqvÞni;j þ Dqv

i;j , T
nþ1
i;j ¼ T �

i;j þ DT
i;j. Omitting the index n, for

every j, j ¼ 1; . . . ;Nj�1, we write the linear algebraic

system to solve by the block-diagonal Thomas algorithm

for the intermediate values (eDDq
i;j,
eDDqu

i;j ,
eDDqv

i;j ,
eDDT

i;j):

oeDDp

ox

" #
iþ1

2
;j

� 4

3

o

ox
l
oðeDDqu=qÞ

ox

" #
i;j

¼ � op
ox

� �
iþ1
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3

o

ox
l
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ox

� �
i;j

;

eDDq
i;j

Dt
þ oeDDqu
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¼ � q� � q
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oy2
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oy2
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oy
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oy
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oy
l
ou
ox

� �
i;j

;

eDDT
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oeDDT

ox

" #
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o

ox
k
oeDDT

ox

" #
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ox

� �
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oT
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2
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� �
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� �
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� �
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!
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where

eDDp ¼ op
oq

����n
i;j

eDDq þ op
oT

����n
i;j

eDDT:

Then, for every i, i ¼ 1; . . . ;Ni�1, the following linear

algebraic system is solved

op
oq

����n
i;j

Dq þ op
oT

����n
i;j

DT ¼ D~pp;

Dq
i;j

Dt
þ
Dqu

i;j

Dx
þ 1

yj

oðyDqvÞ
oy

� �
i;j

� Dy
2
jvi;jj

o2Dqv

oy2

� �
i;j

¼
eDDq

i;j

Dt
þ
Dqu

i�1;j

Dx
þ oeDDqu

ox

" #
i�1

2
;j

;

Dqv
i;j

Dt
þ 1

yj

oðyDqvvÞ
oy

� �
i;j

� Dy
2
jvi;jj

o2ðDqvvÞ
oy2

� �
i;j

¼ eDDqv
i;j ;

DT
i;j

Dt
þ vi;j

oDT

oy

� �
i;j

� k
qi;jCpi;j

o2DT

oy2

� �
i;j

� Dy
2
jvi;jj

o2DT

oy2

� �
i;j

¼ eDDT
i;j:

The terms with the coefficient Dy=2jvi;jj, where Dy is the

mesh cell size, are the artificial dissipation terms pro-

viding upwind approximation. In the nodes of the

‘‘drop–layer’’ boundary, the linearized boundary con-

dition for the Riemann invariant (5) is calculated within

this block-diagonal system, instead of the equation for

the momentum component across the layer:

qi;jui;j
q�2
i;j

 
þ ai;j
q�
i;j

!
Dq

i;j �
Dqu

i;j

q�
i;j
þ q�

i;jai;j
op
oT

� �
i;j

 !�1

DT
i;j

¼ Rcold
j þ

qi;jui;j
q�
i;j

þPðpdj Þ:

The described numerical scheme has been applied after

every time step for the ‘‘cold’’ liquid domain. The time

step has to satisfy the CFL-condition for the ‘‘cold’’

domain [9].
5. Results

5.1. Numerical parameters and solution convergence

The basic mesh for the simulation was characterized

by the least element area set to 10�6R2
0 for the finer mesh

inserted in the circle near the jet origin and 16· 10�6R2
0

for the outer mesh inside the drop. The layer mesh had

Dy ¼ 0:005R0 and 170 nodes in vertical direction. Dur-

ing simulation, the number of nodes was varying ac-

cording to the radial layer size, i.e. the radial coordinate

of the jet tip. In the vertical direction Dx was increasing

according to layer height growth.

The solutions were compared, obtained on three

different meshes, which were the basic one and the me-

shes with characteristic linear sizes 2 and 4 times larger.

The solutions are shown in Fig. 5. For the purposes of

the present work, the solution on the basic mesh can be

accepted as quite accurate. However, for instance, esti-

mations of the jet origination instant and the jet velocity

need a sequence of meshes for convergent solution, as

used for the cold droplet impact in [8].

5.2. Evolution of drop and layer shapes

For the impact with the parameters R0 ¼ 0:01 mm,

V0 ¼ 186 m/s, Twall ¼ 600 K, T0 ¼ 80 K the evolution of

the drop shape and the density gradient inside the drop

and the layer are illustrated in Fig. 6. The shock wave



Fig. 5. The solutions obtained on three different meshes are shown at the instant t ¼ 0:3R0=V0 for the impact with the parameters

R0 ¼ 0:01 mm, V0 ¼ 186 m/s, Twall ¼ 600 K, T0 ¼ 80 K. The computational domain covering the layer is magnified by a factor of 5. At

the observed instant the mesh dimensions were approximately: (a) 200· 170, (b) 100· 140, (c) 50· 80.

Fig. 6. Impact of the nitrogen drop with R0 ¼ 0:01 mm, V0 ¼ 186 m/s, T0 ¼ 80 K on the hot wall with Twall ¼ 600 K. The field of

density gradient is shown at t ¼ 0:01, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 R0=V0.
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moves towards the apex (at t ¼ 0:01, 0.06, 0.1, 0.2, 0.3
R0=V0), interacts with the free surface and evokes the

rarefaction wave spreading towards the wall (t ¼ 0:4,
0.5, 0.7 R0=V0). Meanwhile, the layer height increases

slowly until the origination of the jet (at t ¼ 0:06R0=V0),
and then it starts to grow quickly under the jet, due to

pressure reduction there. The phase transition zone

corresponds to the dark zone of steep density gradient in

Fig. 6, and is just below the layer boundary. The vapor

is much more rarefied under the jet (e.g. see Fig. 6,

t ¼ 0:2R0=V0), causing lower temperature gradient (see

Fig. 7). Hence, the heat flux from the wall under the jet is

negligible in the total transferred heat.

Concerning the influence of the layer on the droplet,

we see that the expansion of the heated vapor increases

the pressure in the cold liquid and shifts the drop a little

away from the wall. More evident is the influence of the

layer on the jet because of its lower inertia (see Fig. 6 for

t ¼ 0:5 and 0.7 R0=V0).

5.3. Impacts of droplets of different sizes

As mentioned above, the influence of the vapor on the

drop depends on the ratio of energies of the drop and the

vapor. In turn, the energies depend on the drop radius.

Let us compare the density distribution at one instant

t ¼ 0:3R0=V0 for the drops of different sizes: R0 ¼ 1, 0.01

mm and 1 lm (Fig. 7). Fig. 7 shows that for 1 lmdrop the

layer thickness reaches 0.08R0, whereas for 1 mm drop it

is less than 0.02R0, thus the ratio of the layer thickness to

the drop radius is relatively thicker for the case of smaller
Fig. 7. The distribution of density inside the drop; of temperature, de

layer for drops of different sizes (R0 ¼ 0:001, 0.01, 1 mm) at t ¼ 0:3R
drop. What is the reason? Small radius provides pro-

portionally small heating time. The layer thickness is

changing approximately as a square root of the heating

time or as a square root of the radius. That is why the

ratio of the layer thickness to the drop radius decreases

with the radius as �1=
ffiffiffiffiffi
R0

p
. Of course, the absolute value

of the layer itself is thicker for bigger drops.

The smaller the drop, the greater the ratio of the

accumulated thermal energy to the kinetic energy of

the drop. In spite of the fact, even in the small drops, the

layer cannot significantly force the shock wave, propa-

gating in liquid (see Fig. 7 for 1 lm drop), because most

of the potential energy transfers to the kinetic energy of

the radial jet.

For rather big drops, the characteristic time of layer

growth is much less than the time of wave propagation.

In the solutions at obtained later times, the layer grows

slowly, and the process evolves with the complicated

shape of the layer boundary (see Fig. 6 for t ¼ 0:7R0=V0,
Fig. 7 for R0 ¼ 1 mm). The flow might become unstable.

The authors suppose that the instability can be ex-

plained by composing the equation for the vorticity

n ¼ ov=ox� ou=oy. After estimating and extracting the

main terms, the equation takes form

on
ot

¼ 1

q2

op
oy

oq
ox

:

Hence, having the steep density gradient oq=ox in the

phase transition zone, the pressure inhomogeneity along

the layer (characterized by the derivative op=oy) may

lead to origination of vortexes in the flow field
nsity and horizontal velocity inside the right half of heated fluid

0=V0 (V0 ¼ 186 m/s, Twall ¼ 600 K).
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(on=ot 6¼ 0). Such instability cannot be treated properly

in the simulations.

5.4. Impacts on walls at different temperatures

The impact on the wall with Twall ¼ 600 K (Fig. 7,

middle) is accompanied by the phase transition from

liquid to vapor along the whole length of the layer of the

heated liquid. As mentioned before, such phase transi-

tion occurs above the critical point, and no distinct

boundary exists between the liquid and the vapor. In the

case of lower temperature, Twall ¼ 140 K, a distinct

phase boundary is seen in Fig. 8 as the density gradient

under the origin of the jet, separating the liquid under

the bulk of drop and the vapor on periphery. The phase

transition does not occur under the bulk of the drop

because of high pressure. It takes place under the jet
Fig. 8. The impact of R0 ¼ 0:01 mm drop on the wall with

Twall ¼ 140 K at V0 ¼ 186 m/s. Density field inside the drop

(top) and the temperature, density and horizontal velocity dis-

tributions inside the right half of layer (bottom) at t ¼ 0:3R0=V0
are shown. Compare with the middle figure of Fig. 7.
only, where the pressure is much lower. Naturally, the

layer is thinner in the case of lower wall temperature, the

influence of the layer on the jet is less noticeable.

5.5. Estimations of heat flux through the wall

For the technologies of surface cooling and film

growing by means of droplet impact, the important

parameter is the heat flux through the wall [7]. In simu-

lations, we can calculate the temperature history for

given parameters of impact. For limited parameter

ranges an analytic formula can be derived as well. For

this purpose, according to numerical results, we suppose

that the specific heat flux is substantial on the contact

area limited by the jet origin zone. It appears so, because

the pressure and the vapor density under the jet are low,

which results in low heat conductivity and low temper-

ature gradient. In contrast, under the bulk of drop we

can neglect convection of the vapor near the wall. Then,

we suppose that the heat transfer is described by the one-

dimensional heat transfer equation.

Further analysis is based on the above assumptions.

As assumed, the efficient contact area is limited by the jet

origin zone, which is approximately equal to the cross-

section of the imaginary spherical drop by the plane

surface. Considered from this geometrical point of view,

the radius of the spot scaled to the drop radius, ~yyM , is a
function of the non-dimensional time, ~tt ¼ tV0=R0, i.e.

~yyM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � ðR0 � V0tÞ2

q
=R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2~tt �~tt2

p
. That is why, to

calculate the total heat transferred through the wall Qð~ttÞ
we integrate the specific heat flux q ¼ �koT=ox over the
contact spot and time:

Qð~ttÞ ¼ �2pR2
0

Z ~tt

0

Z ~yyM ð~ttÞ

0

k
oT
ox

����
x¼0

~yy d~yy d~tt: ð6Þ

The temperature as a solution of the 1D heat transfer

equation is given in [12] as T ¼ T0 þ ðTwall � T0Þ
ð1� erfðx=2

ffiffiffiffi
at

p
ÞÞ, where the thermal diffusivity, a ¼

k=ðq0CpÞ, is supposed to be constant. The corresponding

temperature gradient at the wall is as follows:

oT
ox

����
x¼0

¼ � Twall � T0ffiffiffiffiffiffiffi
pat

p ¼ �ðTwall � T0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V0

paR0~tt

r
:

Thus, we obtain

Qð~ttÞ
Ek
0

¼ 3

2
ðTwall � T0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkCp

q0V
5
0 R0

s
f ð~ttÞ;

where

f ð~ttÞ ¼
Z ~tt

0

Z ffiffiffiffiffiffiffiffiffi
2t0�t02

p

0

~yy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~yy2

pq
d~yy dt0: ð7Þ

Here the initial kinetic energy, Ek
0 ¼ 2=3pq0V

2
0 R

3
0 is used

as a scale.
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The evolution of the non-dimensional heat f ð~ttÞ de-

noted as Q=Q0 is shown in Fig. 9A, where Q0 ¼
2ðTwall � T0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR5

0kq0Cp=V0
p

. Comparison of the heat

calculated by Eq. (7) with the one obtained by 2D

simulations shows a good agreement for the impacts of

droplets smaller than 0.1 mm (Fig. 9B). The agreement

depends on the droplet size but not on the wall tem-

perature. Apparently, the disagreement for the rather

big drops can be explained by the contribution of con-

vection in the heat transfer. Really, during the initial

stage of the layer growth, the rate of layer enlargement is

close to the sound speed; hence, acceleration of the cold

liquid by the vapor is hardly possible. In contrast, in
t V0/R0
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Fig. 9. (A) Evolution of the relative heat transferred through

the wall, Q=Q0, the kinetic energy Ek
x=E

k
0 in axial direction and

the kinetic energy in radial direction Ek
y=E

k
0. (B) Comparison of

the estimations of the heat through the wall, Q=Ek
0, made by Eq.

(7) (dashed lines) with Q=Ek
0 obtained by 2D simulations (solid

lines) for the four impacts of 1 lm, 0.01, 0.1, 1 mm and 1 cm

radius droplets with the parameters V0 ¼ 186 m/s, Twall ¼ 600 K.
later stages of the big drop impact, liquid near the wall

accelerates and expands. It results in a decrease of the

heat flux.

Fig. 9A shows the decreasing kinetic energy in axial

direction and the corresponding increasing kinetic energy

in radial direction, which means transformation of the

flow towards the wall to the jet motion. Both energies are

under weak influence of the heat transfer parameters.

The role of the heat transfer can be characterized by the

ratio of the decrease rate of the total kinetic energy to-

wards the wall _EEk
x to the total heat flux from the wall _QQ.

For instance, for small drop of 0.01 mm radius _EEk
x=

_QQ ¼ 6,

whereas for 1 mm drop it rises up to 250.

The main conclusion that follows from Eq. (7) is that

the heat transfer through the wall for droplets of about 1

mm radius and less depends on the droplet size as R5=2
0

and on the velocity as V �1=2
0 . That is why, the formula (7)

allows generalizing the results of simulations for arbi-

trary but limited parameters of the impacts. In addition,

this formula helped to recognize the contribution of

convection in the heat transfer. Besides, the agreement

of the analytical and numerical models partly justifies

adequacy of the mathematical model of the layer.

5.6. Force acting on the wall

The important parameter for the estimation of ero-

sion of solid surfaces is the force of fluid influence on

wall. In contrast to the heat flux, the force is substantial

on the periphery of the contact spot, i.e. under the jet. In

calculations for the impact of R0 ¼ 0:01 mm drop with

V0 ¼ 186 m/s on the hot surface with Twall ¼ 600 K, the

maximum force integrated over a contact spot was 2

times greater than that in the case of cold impact. The

difference increased with radius and wall temperature.
6. Conclusion

The present work studied the main physical effects

taking place during the impact of the liquid drop on the

heated solid surface. The proposed mathematical model

and the numerical scheme for the thin heated fluid layer

allowed us to obtain and analyze the detailed flow fields

at the initial stages of the impact.

The results obtained showed that during the impact

of nitrogen droplets larger than 0.01 mm radius with the

velocity of the order of 100 m/s no bouncing occurs, but

the almost inertialess tip of the jet can be pushed off the

surface by the vapor layer. The reason found is the

dominant transformation of the initial kinetic energy

and the energy of the heated vapor into the radial jet

motion. That is why the processes in the main part of the

drop are similar to those during the impact on the cold

surface, but near the wall the supersonic jet of vapor

appears, and influences the liquid jet.
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The heat flux cooling the wall has been calculated.

For estimation of the heat flux for small droplets, an

analytical formula has been derived. The analytical for-

mula has been justified through numerical simulation.

Taking into account the difficulties of experimental

study due to very small scales (e.g. of the order of 10�5 m

and 10�7 s for 1 mm drop) we conclude that the present

model is a useful instrument to study high-speed impacts

of droplets on either cold or hot surface.
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